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ABSTRACT 
The effect of neutrino loss on the evolution of pure iron stars of 0.398, 0.631, 1.0, and 2.5 MG is 

studied. The evolutionary tracks, computed by the Henyey-Schwarzschild method, are followed into the 
white-dwarf stage, in the case of those models less massive than the Chandrasekhar limit, or to the stage 
of incipient instability in the case of the presupernova models. Comparison with other models for similar 
evolutionary phases enables us to identify some of the physical processes of importance for these late 
stages and to suggest the following conclusions: (1) the 1 MO models with neutrino losses follow an 
evolutionary path resembling the one suggested by Harmon and Seaton for the nuclei of the planetary 
nebulae and are also consistent with the time scale of -10000 years suggested for these stars; (2) the 
iron-helium transition may not be the mechanism responsible for the core collapse in presupernovae of 
mass -2.5 MO . 

I. LNTRODUCTION 

This paper is the first in a series dealing with the late phases of stellar evolution. 
Our aim is to investigate the range of conditions over which the various physical proc- 
esses that are important in these stages dominate the evolution and to establish the 
scale of these processes. The present calculations are concerned with the evolutionary 
paths of homogeneous stellar models starting from arbitrary but reasonable initial con- 
ditions. As we shall show, only the first portions of these tracks are affected by the 
choice of starting model. Since we treat the physics rather accurately-within the limi- 
tations of these simplifying approximations-the conditions in the deep interiors can 
provide insight into conditions in real stars, so that our results can be used to guide 
calculations of more realistic model sequences. 

A numerical investigation of pure iron stars of 1.0 and 2.5 Mo, both with and with- 
out neutrino losses, has previously been carried out by Vila (1965). We have now ex- 
tended these calculations to 0.398 and 0.631 M a ,  and we present here a discussion of 
the results for all four cases. The choice of an iron composition was made both because 
it represents one possible extreme of composition and because nuclear reactions do not 
have to be considered. Furthermore, in the case of the 2.5 M a  models this choice en- 
ables us to study the evolution of presupernova models immediately prior to the iron- 
helium transition, but still in the regime in which dynamical effects can be neglected. 

11. METHOD OF MODEL CONSTRUCTION 

a) Tlze Program 

The calculations were carried out using the method of Henyey and his co-workers 
(1959, 1964) with the logarithmic variables discussed by Schwarzschild (1958, p. 116) 
and by Harm and Schwarzschild (1964). Each model consisted of about 100 shells 
with masses determined by the condition that the change in the logarithm of P, r ,  M, be 
less than 0.1. The time step was chosen so that the change in log T per iteration was 
below 0.0001 for all shells after about 10 iterations. The computations were carried 
out on an IBM 7074 a t  the University of Rochester and on an IBM 7090 a t  Imperial 
College, London, and required approximately 1 minute per model. 

* Present address: Goddard Institute for Space Studies, NASA, New York, N.Y. 
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b) Surface Boundary Condition 
Most of the models we have calculated have made use of the "radiative-zero" surface 

boundary condition described by Schwarzschild (1958, p. 89). In  the calculations of 
the 0.631 and 0.398 M o  models this condition was modified as follows. The opacity 
law was assumed to have the form of a generalized Kramers' law: K = K o P ~ T - ~ ,  
where KO, a, and S are all determined a t  the last mass shell before the surface (for 
Kramers' opacity a = 1 and S = 4.9, and the ratio 0 of gas pressure to total pressure 
was taken to be of the form /3 = P0(P/T4)', where PO and 6 are determined a t  the last 
mass shell. Since E = (1 - P)/P, e << 1 in the usual situation where the radiation pres- 
sure is negligible, and PO is, therefore, also almost unity. Under these circumstances 
Schwarzschild's (1958, p. 89) equation (11.5) is replaced by 

p = (l --- + a 4ac 4*GM)1'"+a'T(4+Sl/~l+a~ , 
4 + S 3 KoL 

and equation (14.5) is replaced by the system of equations 

where Y = 1 - r/R, and 3: is the integral which arises in the solution of the mass- 
conservation equation in the envelope. Here r/R is the ratio of the radius of the last 
shell to the total radius of the star. Equation (1) then provides the boundary condition 
on the luminosity L to be used at the last shell, and equation (4)-with M7 held fixed 
during the relaxation phase of the calculations but variable from one evolutionary 
model to the next, and with the help of equations (2) and (3)-provides the boundary 
relation for R. The characteristics 01 models which were calculated with the new surface 
condition were not appreciably different from those computed using Schwarzschild's 
"radiative-zero" method; the models with either surface condition followed the same 
locus in the (log L, log T,)-diagram but a t  slightly different time scales ( ~ 5  per cent). 

c) Equation of State, Opacity, and Nezttrino Rates 

We took the pressure P and the temperature T as the two independent variables 
which characterize the thermodynamic state of matter in the stellar interior; we there- 
fore require the entropy per gram, S,  and the density p as functions of P and T. We 
treat the ions as a perfect gas throughout; electrostatic corrections a t  low temperatures 
(Salpeter 1961) and the transition to the crystalline phase (Van Horn 1968) were not 
taken into account. The pressure, temperature, density, and entropy are therefore re- 
lated exactly as in S3A.1 of Hayashi et al. (1962), and we have approximated then con- 
tribution of the electrons-as given by the numerical calculations of Grasberger (1961) 
-by piecewise continuous functions which give log p and the electron entropy S, as 
functions of P and T to 5 per cent accuracy over the entire range of the variables. We 
assume complete ionization throughout the star. Since this is invalid only if both T << 
108 O K and p << 105 g ~ m - ~ ,  we obtain an inaccurate temperature profile only in the 
outermost 10 per cent of the total mass even in the most extreme case of the 0.398 M o  
star. 
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For the opacities and neutrino rates we have used piecewise continuous functions 
which give an accuracy of 5 per cent over the needed range. For the electron-scattering 
opacity we have used equations (3A.32) and (3A.33) of Hayashi et al. (1962), and for 
the conductive opacity, the values given in the numerical tabulation by Mestel (1950). 
The free-free opacity was determined by fitting an expression of the form (Hayashi 
et al. 1962. eq. r3A.441) 

where 9 is the degeneracy parameter of Hayashi et al., to a table of pure iron opacities 
which was kindly provided for us by Dr. A. N. Cox of the Los Alamos Scientific Labo- 
ratory. Fitting with his table at  T = 4 X 1070K, p = 60 g ~ m - ~  we obtained K1 = 
4.193 X lo1'. The corresponding value of KO, which occurs in Kramers' opacity for- 
mula is 2.43 X loz5. 

At the high densities and low temperatures encountered in the phases in which we 
are interested only three neutrino processes are important. For the photoneutrino rate 
we have used equation (2F.24) of Hayashi et al. (1962). This yields a gross overestimate 
of the rate when the electrons are highly degenerate, but since under these conditions 
this process turns out not to contribute very much to the total neutrino-loss rate the 
error is not serious. For the pair-annihilation process we have used the expression 
(Hayashi et al. 1962, 5 2F.2b) 

log E,, = 18.7 + 3 log Tg - 5.15 Tg-I - log p , (6) 

where E,, is the rate of energy loss in ergs g1 secl, Tg is the temperature in units of 
lo9 K, and p is the density in g ~ m - ~ .  The rate of energy loss due to plasma neutrinos has 
been tabulated by Inrnan and Ruderman (1964). We have not corrected the plasma 
rates by the factor of 2 discussed by Zaidi (1965), which became known to us after the 
1 M o case had been completed. 

Since all of these neutrino-loss mechanisms depend upon the existence in fact of the 
theoretically predicted direct electron-neutrino interaction (Sudarshan and Marshak 
1958; Feynman and Gell-Mann 1958), which has not yet been established experimen- 
tally, we have calculated two parallel sets of evolutionary model sequences both with 
and without the inclusion of these processes of neutrino loss. 

d )  Starting the Integrations 

The starting model for the 1 Mo sequence was a polytrope of index n = 3 and with 
the central density given by log p, = 3.435, log T, = 8.085, log PC = 19.126, log R = 
10.400, all in cgs units. At these temperatures and densities both neutrino losses and 
deviations from the perfect-gas laws are negligible. The luminosity distribution was 
normalized to an arbitrary value of the total luminosity L at  the surface, and L was 
varied until convergence was obtained. In the 1 Mo case the value L = 112.8 Lo proved 
satisfactory. 

For the 2.5 Mo sequences the starting model was taken to be a polytrope of index 
n = 3, but with log PC = 2.738, log T, = 8.038, log PC = 18.495, log R = 10.742, and 
L = 3.74 x 103 LO. 

For the sequences of lower mass satisfactory starting models were obtained by means 
of isentropic homology transformations from the early relaxed 1 M o models. 

Although the initial models are artificially contrived, the starting transients damp 
out in times of the order of the photon diffusion time 

7,h K p R 2 / c  (7) 

where K, p,  and R are typical values for the opacity, mass density, and radius, respec- 
tively, and c is the velocity of light. The models with ages t > ~ , h  are thus independent 
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of the initial conditions. The recent computations of pre-main-sequence evolution by 
Bodenheimer (1966) graphically demonstrate the independence of phases with ages 
1 > rph from the initial conditions for some rather extreme choices for the starting 
model. Initial photon-diffusion time scales for our 0.398, 0.631, and 1.0 M o  models 
are, respectively, 1.2 X lo5, 2.5 X 105, 4.6 X 105 years, all of which are shorter than 
the corresponding times, 3.1 X lo7, 3.7 X lo6, and 5.5 X lo5 years, a t  which the peak 
luminosity is reached in the models which include neutrino losses (see Fig. 1). In the 
2.5 M o  case, r p h  is of the order of the entire evolutionary age of the star. For this 
case, we cannot make very strong statements about the relevance of our calculations, 
and we have simply followed the philosophy outlined in $ I. 

111. PRE-WHITE-DWARF EVOLUTION 

The evolutionary tracks of our pre-white-dwarf models are shown in Figure 1. The 
wiggles a t  the beginning of each track are starting transients which damp out in times 

FIG. 1.-H-R diagram for pure iron stars of 0.398, 0.631, and 1.0 MQ with neutrino losses (fill& 
circles and numbers with suffix N) and without (open circles and numbers without suffix). Numbered 
points refer to specific models in Tables 1-6. 

FIG. 2.-Distributions of net gravitational-energy generation and of the storage or release of heat a t  
constant volume as functions of the fractional mass M,/M for several stages in the evolution of the 
1 M o  star without neutrino losses. C, is the specific heat per gram at  constant volume, Numbers refer 
to specific models listed in Table 1. 
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of the order of ~ ~ h .  In Tables 1-6 we give for the models referenced by the numbered 
points the quantities p,  T, P, etc., all in cgs units. The subscripts c, d, pk refer, respec- 
tively, to the mass shells where M, = 0, $(M,) = 0, dT/dM, = 0. We discuss sepa- 
rately the evolution in the two cases with and without neutrino losses. 

a)  Evolution without Neutrino Loss 
The evolution of neutrinoless models proceeds as discussed in $ 9 of Hayashi el al. 

(1962). The initial phase is one of quasi-homologous contraction that takes place a t  
almost constant luminosity. This is a consequence of the importance of electron scat- 
tering in the opacity law during these early stages. Degeneracy appears in the center 
a t  model 2(*, = O), and the mass fraction contained in the degenerate core grows 
rapidly until a t  model 4 it extends over approximately 90 per cent of the mass of the 
star, at  which stage the maximum of the central temperature is reached. The evolution 
from models 5-9 covers the final cooling, down a line of almost constant radius to the 
region occupied by the observed white dwarfs (log L/Lo 5 - 2): 

The distribution of gravitational-energy release is shown in Figure 2 for several of 
the 1 M o  models without neutrino loss. In  the early evolution (models 1-4) about 
half of the total energy released is stored as thermal energy of the electrons and ions. 
The rest of the gravitational energy liberated goes partly into raising the Fermi level 
of the electrons, and the balance gives rise to the luminous energy flux. At the point 
where the central temperature reaches its maximum value, however, the further, slower 
compression of the central regions cannot alone maintain the rate of energy loss there, 
and the deficiency is made up from the thermal energy store of the matter a t  the center; 
the heat loss (C,dT/dt; dT/dt < 0) is shown in the figure. At the temperature maximum 
(model 3-4) the magnitude of C,dT/dt is small in comparison with the net gravita- 
tional-energy release, as would be expected, since this model represents a transition 
from the contraction phase to the cooling phase of the evolution. (The wiggle in dL,/ 
dM, a t  M,/M - 0.3 is related to the transition from non-relativistic to relativistic 
degeneracy in the 1 M o  model with the associated changes in the equation of state.) 

During the final cooling phases the gravitational-energy release is highest in the outer 
layers, where the contraction proceeds most rapidly. This is clearly shown in model 6 
of Figure 2, where virtually all the energy loss in the relativistic, degenerate inner core 
(M,/M 5 0.45) is due to heat leakage, while -30 per cent of the luminosity in the 
outer layers is still due to gravitational contraction. Finally, in model 8 the cooling of 
the degenerate core accounts for -90 per cent of the total luminosity, in agreement 
with the result of Mestel and Ruderman (1967). The temperature distribution in the 
degenerate core in all of these cooling phases is very nearly uniform because of the 
high efficiency of thermal conduction by the degenerate electrons (Fig. 3). 

These numerical calculations may be compared instructively with the simplified 
evolutionary model discussed by Schwarzschild (1958, p. 237). As Schwarzschild shows, 
for a white dwarf with an isothermal core and a radiative envelope in which the opacity 
is given by Kramers' law, the luminosity L is proportional to TCa.j. The present model 
sequence shows L = Tc2.63k0.02, where the uncertainty in the exponent reflects mainly 
the uncertainties in the approximations used for the various functions of state (K, E ,  

etc.). The differences in the exponents are due to departures of the opacity from Kra- 
mers' law: For a generalized Kramers' opacity of the form K = PaT-S the generaliza- 
tion of Schwarzschild's equation (27.5) is L a: Tt,(1.5+S--2.5a) = Tt$, where Tt ,  is 
the temperature at the transition layer defined by 

log Tt, - $ log p,, = 4.6 . (8) 

For our sequences, the exponent n at this transition layer is 2.42 $. 0.02 and n increases 
to 3.25 a t  the surface. Accordingly a relationship like Schwarzschild's equation (27.5) 
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does in fact hold for a model sequence when the temperature exponent is determined 
by the actual opacity law near the edge of the degenerate core. 

A second comparison may be made with Schwarzschild's relation between the lumi- 
nosity and the rate of decrease of the temperature of the isothermal core. If .the heat 
content of the non-degenerate ion gas is the only source of energy, the luminosity is 

where C is the "heat capacity" of the entire star. Interpreting T,  as the central tem- 
perature of our models, for late phases we find that C ranges from 10 per cent larger 
up to as much as a factor of 3 larger than the heat capacity of the ions alone, the larger 

FIG. 3.-Temperature distribution as a function of fractional mass for several stages in the evolution 
of the 1 Mo star without neutrino losses. Numbers refer to specific models listed in Table 1. 

deviations corresponding to the smaller stellar masses. Part of this extra energy is the 
heat content of the electrons, while the rest is due to the small residual gravitational 
contraction toward the degenerate "black-dwarf" state. For the conditions appropriate 
to models 7-9, the ions alone supply about 70, 55, and 25 per cent of the total lumi- 
nosity of the 1.0, 0.631, and 0.398 M o  stars, respectively, while the heat content of 
the ions plus electtons correspondingly accounts for approximately 80, 65, and 50 per 
cent. Evidently our models for white dwarfs in the observed luminosity range, espe- 
cially those of lower mass, are sufficiently far removed from the black-dwarf state so 
that the theorem of Mestel and Ruderman (1967) is not strictly applicable; gravita- 
tional contraction can still supply a fraction of the total energy release. This can have 
a significant effect upon the evolutionary time scales. (For a pure carbon star, of course, 
the effect of the electrons would be smaller by the factor & than in the case of the iron 
stars we have studied.) 
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b) Evolution with Neutrino Losses 

After a short period of quasi-homologous contraction a distinct difference develops 
between the evolution of the stellar models which include neutrino losses and those 
which do not. A substantial neutrino luminosity has already developed by models 
2N-3N, as is evident from Tables 6 6 .  This has several effects. 

Since these stars are essentially transparent to neutrinos, the copious generation of a 
large neutrino flux in these stages has the effect of "refrigerating" the stellar interior. 
This depresses the temperature a t  the center so strongly that an inverted temperature 
gradient is produced (Fig. 4). To supply the energy which is being lost (primarily in 

9 0 
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0 0 2 0 4 0.6 0 8 1 .O 
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FIG. 4.-Temperature distribution as a function of fractional mass for several stages in the evolution 
of the 1 IMo star with neutrino losses included. Numbers refer to specific models listed in Table 4. 

the form of photoneutrinos) in these early phases of the neutrino evolution (models 
3N-6N) the star must contract, and it rapidly develops an extensive, degenerate core 
(Fig. 5 ) .  In  the contraction, the temperature a t  the edge of the core rises. Since the 
neutrino losses are confined mainly to the highly conducting, degenerate interior 
(Fig. 6), there is no escape route for the gravitational energy released in the non-de- 
generate layers, and the temperature gradient near the surface becomes appreciably 
steeper than in the case without neutrino loss (Figs. 3 and 4). The luminosity therefore 
increases considerably above the luminosity of the neutrinoless models, resulting in 
the upward loop in the neutrino models of Figure 1. The time scale of this loop is of 
the order of the time r v  for depletion of the thermal energy by neutrino loss: 

where U ,  is the thermal energy per gram; the fact that rU is of the order of lo4 years 
for the 1 Mo star together with the proximity of the loop to the region occupied by 
the nuclei of the planetary nebulae in the H-R diagram (Harmon and Seaton 1964) 



6 7 8 9 
log T 

FIG. 5.-Temperature-density plane sl~owing the evolutionary paths of several mass shells (the curves 
are labeled by the fractional mass M,/M) for the 1 MO model with neutrino losses. Degeneracy bound- 
aries are also shown. Numbered points refer to specific models in Table 4. 

FIG. 6.-Logarithm of the total neutrino-loss rate e,, in ergs g-l sec-l, as a function of the fractional 
mass M,/M for the 1 MO models with neutrino losses. Numbers refer to specific models in Table 4. 
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suggests that the neutrino processes in stars of mass -1 MO may be connected in 
some way with the origin of the planetary nebulae (Vila 1965, 1966). 

It is of interest to estimate the range of this neutrino effect. We can estimate the 
maximum central temperature from the degenerate relations (Chandrasekhar 1939) 

together with the classical relation 

as that temperature for which PC equals Pa, i.e., 

Empirically, 

T., = 4.5 X 1O8$2 O K, without neutrino losses , 

f ( 4  = 5.6 X 108 -- " K, with neutrino losses , 
x3 

where the constant has been chosen to be representative of the central temperature- 
central density relations a t  T = T.,, for all our sequences. 

Since the onset of degeneracy marks the end of the quasi-homologous contraction 
phase, we equate T.,, to the central temperature from homologous, non-degenerate 
models to obtain 

which determines M as a function of x and p. Again from the models we find 

M/Mo = 2 [f$]312, without neutrino losses , 
p2 

3.5 f(x) 312 = 7 [---g-] , with neutrino losses, 

which together with equation (14) determines the maximum central temperature as a 
function of the total stellar mass parametrically through the quantity x. 

The range of central temperatures over which the neutrino losses dominate the 
evolution can be estimated in the following way. From our calculations, the photon 
luminosity of the neutrino models a t  the time of maximum central temperature is 

L/Lo = 1300 (M/Mo)' . (97) 

Since the photoneutrino loss is the most important one in these early phases, the neu- 
trino luminosity of the models should be proportional to T8. Furthermore, the neutrino 
luminosity will be proportional to the mass of the neutrino-emitting core. From the 
models 

L,/Lo = 0.01 ( M / M Q ) ~ / ~  Tg8 , (18) 

where T8 is the central temperature in units of lo8 O K, and L, a M3I2 instead of a M1 
because the mass of the neutrino-emitting core increases more rapidly than linearly 
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with the total mass. The combination of equations (17) and (18) thus gives, for the 
central temperature a t  which neutrino losses will first begin to dominate the evolution, 
the relation 

Ts _> 4.4 (M/MO)~"'~ . (19) 

When T,,, from equation (14) is less than Ts from equation (19), the neutrinos are 
ineffective throughout the evolution. 

The rapid acceleration of the evolution by the neutrino losses is graphically illus- 
trated in Figure 7. Since the neutrino model 1N was obtained from the sequence with- 
out neutrino losses by simply "turning on" the weak interaction, both sequences have 
a common model a t  this point (except for the neutrino losses), and acceleration of the 
evolution can be obtained directly from this figure. The initial spike in the luminosity 
a t  models 3N-6N is due to the photoneutrino-loss mechanism, while the plasma neu- 
trino emission dominates the remainder of the evolution; the pair-annihilation process 

log  t ( y e a r s )  

FIG. 7.-Optical and neutrino luminosities as functions of time for 1 MO models with and without 
neutrino losses. Origin of time for the neutrino models is chosen relative to a model in common with the 
sequence without neutrinos a t  an age in the latter case of 7.158 X lo4 years. Note scale change between 
log(age) equal to 5.7 and 5.8. Numbered points refer to specific models in Table 4. 
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is not important in any of the models because the temperature is too low. During the 
plasma neutrino stage (models 7N-ION) the temperature peak produced by the neu- 
trino losses in the core becomes sharper and moves outward toward the surface. If 
combustible materials were present in these layers they could be ignited a t  this time 
to produce nuclear shell burning in the outer layers, with the possibility of expulsion 
of material in a nebular shell. 

AS Figure 7 shows, the evolution of the 1 Mo neutrino model is much more rapid 
than the evolution of the no-neutrino models until the optical luminosity falls to about 

Lo. At this point the neutrino and optical luminosities are again approximately 
equal, and the rate of subsequent evolution is determined principally by the optical 
lumiliosity (7, becomes greater than rph). The temperature peak which appears so 
prominently in the earlier evolution now disappears, and the star is indistinguishable 
from the neutrinoless models. The total times required for the 0.398, 0.631, and 1 Ma 
models to cool down to Lo are, respectively, 7.06 X lo7, 2.20 X lo7, and 2.59 X lo1 
years, with neutrino losses, and 4.78 X los, 3.11 X lo8, and 2.13 X lo8 years, without. 
Thus the neutrino emission has the important effect of reducing the lifetimes of stars 
in the immediate pre-white-dwarf phases of evolution by about an order of magnitude! 

IV. PRESUPERNOVA EVOLUTION 

Burbidge et al. (1957) have suggested that the endoergic iron-to-helium transition, 
which takes place a t  sufficiently high temperatures in the interior of a massive star 
a t  the end of its thermonuclear evolution, can cause the implosion of the central core, fol- 
lowed by the explosion of the outer layers in a type I1 supernova outburst. This hypothe- 
sis has been elaborated by Hoyle and Fowler (1960), and numerical calculations of the 
implosion-explosion phase have been carried out by Colgate and White (1966), Arnett 
(1967), and Schwartz (1967), the latter computations including also the possibility of gen- 
eral-relativistic effects. Calculations of the evolution of the internal structure just prior to 
the core collapse have not previously been reported, however, and in this section we 
summarize our numerical results for this stage. 

a)  Evolution without Neutrifzo Loss 
The evolutionary tracks of the presupernova models are shown in Figure 8. The 

initial phase consists of a homologous contraction up to model 4 where partial degen- 
eracy sets in a t  the center (Fig. 9). In succeeding models gravitational-energy release 
increases in the outer layers, relative to the center, and the further contraction be- 
comes less nearly homologous as degeneracy becomes increasingly important through- 
out the star. As is evident from Figure 9, p, and T,  for our final model (5) are very close 
to the iron-helium transition boundary, and further evolution of the star would make 
it necessary to take this reaction into account. 

Properties of selected models of this sequence are given in Table 7. Dynamical effects 
are not important for any of these models, since the rate of contraction is governed 
solely by the optical luminosity, which proceeds on the photon-diffusion time scale 
rph lo6 years and is longer than either the hydrostatic readjustment time rhr N 

(Gpme,,)-1'2 - 10 sec, or the evolutionary time of 3.4 X lo5 years. 

b)  Evolution with Neutrino Losses 
In the early stages of the contraction, up to model 3N, this sequence is almost iden- 

tical to the one without neutrino loss. At this point, the neutrino luminosity becomes 
comparable to the optical luminosity, and the evolutionary tracks diverge. The optical 
luminosities of these models are higher than in the case without neutrinos for the rea- 
sons previously discussed in 5 111. In contrast to the pre-white-dwarf models, the 
dominant neutrino-production mechanism throughoul the present sequence is the photo- 



FIG. 8.-H-R diagram for pure iron stars of 2.5 Ma with neutrino losses (filled circles and numbers 
with suffix N) and without neutrino losses (open circles and numbers without suffur). Numbered points 
refer to specific models in Tables 7 and 8. 

'a' N 
f 

FIG. 9.-Temperature-density plane showing the evolutionary paths of the central regions for the 
2.5 Mo models with and without neutrino losses. Also shown is the degeneracy boundary zr:l ".e iron- 
helium transition line. Numbered points refer to specific models in Tables 7 and 8. 
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neutrino process, and there is also a significant contribution due to pair annihilation; 
the plasma neutrino rate is negligible outside of a very small region near the center. 
The high temperature dependence of the photoneutrino reaction results in a very rapid 
rise in the rate of energy loss, with a consequent increase in the rate of evolution of the 
star; in the final model, the evolutionary time scale as measured by the neutrino-loss 
time scale r y  is of the order of a few days, and the dynamical terms are of the order of 
lWa of the gravitational-energy release. Properties of selected models from this sequence 
are listed in Table 8. 

In addition to accelerating the evolution, the "refrigeration" of the core by the ex- 
treme neutrino-loss rates produces a temperature inversion in the present models 
similar to, but less extreme than for stars below the limiting mass, as shown in Figure 
10. The evolutionary track of the central region of the star in the temperature-density 

FIG. 10.-Temperature distribution as a function of fractional mass for several stages in the evolution 
of the 2.5 Ma star with neutrino losses. Numbers refer to specific models in Table 8. 

plane (Fig. 9) consequently begins to bend away from the iron-helium transition region; 
thus it is not clear whether this reaction will have any effect upon the further evolution 
of the core. If the further contraction proceeds along an adiabat with y = 3, the neu- 
trino-loss time scale r v ,  which controls the rate of evolution a t  this stage, becomes 
comparable to r h ,  a t  a temperature of about 101° O K and a density of about 101° g ~ m - ~ .  
For higher temperatures photoneutrino production alone would be sufficiently fast to 
initiate a free-fall collapse, in agreement with the conclusions of Chiu (1966) for a star 
of 10 Ma. 

All of these results have been based upon the assumption that a dynamical collapse' 

Although general-relativistic effects may be important in determining the precise boundaries of 
the regions of dynamical instability, as discussed by Baglin (1966), the effects upon an already unstable 
and collapsing object appear to be negligible for densities less than 6 X 1014 g cm-3 (Schwartz 1967). 
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will not take place before the central regions of the star reach the 50 per cent helium 
plus neutrons-50 per cent iron line discussed by Hoyle and Fowler (1960). Recent cal- 
culations by Rakavy, Shaviv, and Zinamon (1967) have shown, however, that the 
boundary of the instability region, a t  a given density, occurs a t  an appreciably lower 
temperature than the 50 per cent equilibrium line. Thus, while the central temperature 
of 101° " K extrapolated from our models is still 20 per cent less than the temperature 
required to dissociate half of the iron into helium plus neutrons a t  the extrapolated 
central density of 101° g ~ m - ~ ,  i t  appears to be sufficient to drive the central regions 
of the star well into the region of dynamical instability. On the other hand, the calcu- 
lations of the iron-helium transition instability have all been based upon the assump- 
tion of strict thermodynamic equilibrium, while it is actually the rate of this dissociation 
reaction which determines which mechanism is the cause of the instability in the border- 
line cases. Since the rate of this reaction has never been accurately calculated, and since 
in addition the pair-annihilation and photoneutrino rates which we have used over- 
estimate the rate of energy loss under these extreme conditions, we cannot predict accu- 
rately the stellar mass a t  which the iron-helium transition becomes the mechanism 
responsible for the collapse. We note that Fowler and Hoyle (1964) recently emphasized 
that this transition must be the cause of the implosion of the core in sufficiently massive 
stars. 

Finally, let us compare our models with the starting models used by Colgate and 
White (1966). Their initial (2 Mo)  model consisted of a polytrope (n = 3, pc = 9.5 X 
108 g cmw3) with pair annihilation and URCA-process neutrino losses. The initial con- 
traction of this model approximated an adiabat with y = $, up to a density of about 
2 X 101° g cmW3, where electron capture rapidly converted the iron into neutron matter. 
The iron-helium transition did not occur in this model sequence. 

In our final model with the central density of 7.9 X lo7 g cmm3, the central tempera- 
ture of 2 X lo9 ' K is already considerably depressed by both electron conduction and 
neutrino losses below the value of 3.4 X 101° " K which would be appropriate to a 
2. M o  polytrope with n = 3. Since the neutrino losses increase much more rapidly 
with temperature than does the gravitational-energy production, a polytropic starting 
model may not be adequate for the supernova calculations. Furthermore, since the 
photoneutrino-loss rate is dominant in these phases, the central regions may be driven 
even farther away from the iron dissociation region than in Colgate and White's models. 
Both of these effects will affect the precise mass limit a t  which the neutrino losses cease 
to be the cause of the core collapse. Further, Colgate and 'Mrhite's work showed that 
in this stage the model contracts along an adiabat with y = $. Despite the non-poly- 
tropic structure for our models, we find that the central pressures can be approximated 
by a power law P, a pc1.34, thus confirming this aspect of their calculation. 

V. SUMMARY AND CONCLUSIONS 

The principal results of this study may be summarized as follows. 
i) For the three models with mass less than the Chandrasekhar limit and without 

the inclusion of the neutrino processes, the energy released in the white-dwarf phases 
(log L/Lo - -2 to -4) is derived partly from gravitational contraction as well as 
from the heat loss of the ions plus electrons. For the stars of lower mass, gravitational- 
energy release supplies a larger fraction of the total energy than in stars of mass -1 Mo,  
indicating that the degree of degeneracy in these stars is not yet sufficiently large for 
strict applicability of extrapolations from the black-dwarf state. Such considerations 
are useful as a first approximation, however. 

ii) As mentioned by Schwarzschild (1958, p. 237), a power-law relation between the 
luminosity of a white dwarf and the temperature a t  the edge of the degenerate core 
does exist although the temperature exponent (which is determined by the tempera- 
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ture dependence of the opacity law) is somewhat less than the value of 3.5 derived by 
Schwarzschild from Kramers' law. White dwarfs without neutrino losses consequently 
spend more time in a given range of luminosities than expected on the basis of the 
analytic model. 

iii) Inclusion of neutrino losses accelerates the rate of evolution, since energy losses 
mocked on the neutrino time scale T~ rather than on the time scale for photon diffusion. 
?he increased energy losses effectively refrigerate the central regions of the star and 
produce a temperature inversion with a peak just outside the edge of the degenerate 
core. The steepening of the temperature gradient in the outer layers which then results 
produces a higher luminosity in the neutrino models, which consequently traverse 
loops in the H-R diagram a t  fairly high luminosities before strong degeneracy sets in 

FIG. 11.-Isochrons for pre-white-dwarf models without neutrino losses. T i e s  are measured from 
epoch of maximum optical luminosity. 

The similarity of the position and time scale of the loop in the case of the 1 Mo star 
to the evolutionary track found by Harmon and Seaton (1964) for the nuclei of the 
planetary nebulae suggests the possibility that the nebular expulsion may result from 
the triggering of thermonuclear reactions in the outer layers of the star when com- 
bustible material is traversed by the temperature peak (Kutter 1968; Savedoff, Kutter, 
and Van Horn 1968). 

iv) In the immediate pre-white-dwarf phases, the lifetimes of the neutrino models 
are about an order of magnitude smaller than for the no-neutrino models. These results 
agree somewhat better with the available observations of the statistics for the hottest 
white dwarfs than do the models without neutrino losses. This supports the suggestion 
(Chin, Chiu, and Stothers 1966; Stothers 1966) that the apparent lack of stars immedi- 
ately above the region of the H-R diagram occupied by the white dwarfs may be due to 
these neutrino processes; however, the statistics are not yet adequate for a decisive 
test of the weak-interaction theory. Isochrons have been plotted into the (log L, log T,)- 
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plane as well as evolutionary tracks for these models in Figures 11 and 12. The obser- 
vational points are taken from Eggen and Greenstein (1965). Because of the probable 
importance of crystallization (Van Horn 1968) a detailed comparison with the obser- 
vations seems unwarranted a t  this time. It should be noted that before the model 
crosses the crystallization line the isochrons constitute a lower limit to the age differ- 
ence from maximum luminosity. Only in the extreme crystal region should the specific 
heat vitiate these lower limits (Ostriker 1968). 
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FIG. 12.-Isochrons for pre-white-dwarf models with neutrino losses included. Times are measured 
from the epoch of maximum optical luminosity. 

v) Presupernova models of 2.5"Mo have been followed to the iron-helium transition 
or to the point a t  which the dynamical effects cannot continue to be neglected. In  the 
neutrinoless models, the evolution proceeds by quasi-homologous contraction up to the 
boundary of the iron-helium transition zone. 

vi) In  the neutrino models, the depression of the central temperature by the photo- 
neutrino process appears to prevent the iron-helium transition from occurring, in agree- 
ment with the results found by Chiu (1966) and by Colgate and White (1966) for stars 
of sufficiently low mass. If no other physical processes intervene, the photoneutrino 
loss appears to be capable of initiating a core collapse at a temperature of -101° O K 
and a density of -1010 g ~ r n - ~ .  However, the photoneutrino rates which we have used 
overestimate the loss rates in regions of such strong degeneracy, and future calculation 
must use more realistic estimates for these rates (Beaudet, Petrosian, and Salpeter 
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1967). Further work is also needed on the dissociation rate for iron in regions of strong 
degeneracy before the precise mechanism responsible for the core collapse in a super- 
nova model of given mass can be definitely established. 
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his gratitude to Professor J. H. Oort for his hospitality during the time spent a t  the 
Leiden Observatory and to the cooperation of M. J. Seaton of the University of London 
and the Computer Center of Imperial College, London. This work has been supported 
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